Cauchy Graph Embedding
نویسندگان
چکیده
Laplacian embedding provides a lowdimensional representation for the nodes of a graph where the edge weights denote pairwise similarity among the node objects. It is commonly assumed that the Laplacian embedding results preserve the local topology of the original data on the low-dimensional projected subspaces, i.e., for any pair of graph nodes with large similarity, they should be embedded closely in the embedded space. However, in this paper, we will show that the Laplacian embedding often cannot preserve local topology well as we expected. To enhance the local topology preserving property in graph embedding, we propose a novel Cauchy graph embedding which preserves the similarity relationships of the original data in the embedded space via a new objective. Consequentially the machine learning tasks (such as k Nearest Neighbor type classifications) can be easily conducted on the embedded data with better performance. The experimental results on both synthetic and real world benchmark data sets demonstrate the usefulness of this new type of embedding.
منابع مشابه
Another proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملAsymmetric filter convergence and completeness
Completeness for metric spaces is traditionally presented in terms of convergence of Cauchy sequences, and for uniform spaces in terms of Cauchy filters. Somewhat more abstractly, a uniform space is complete if and only if it is closed in every uniform space in which it is embedded, and so isomorphic to any space in which it is densely embedded. This is the approach to completeness used in the ...
متن کاملSome topological indices of graphs and some inequalities
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
متن کاملA note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
متن کامل